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Space-time mapping of soil salinity using probabilistic bayesian
maximum entropy

Abstract The mapping of saline soils is the first task
before any reclamation effort. Reclamation is based on
the knowledge of soil salinity in space and how it evolves
with time. Soil salinity is traditionally determined by soil
sampling and laboratory analysis. Recently, it became
possible to complement these hard data with soft sec-
ondary data made available using field sensors like
electrode probes. In this study, we had two data sets.
The first includes measurements of field salinity (ECa) at
413 locations and 19 time instants. The second, which is
a subset of the first (13 to 20 locations), contains, in
addition to ECa, salinity determined in the laboratory
(EC2.5). Based on a procedure of cross-validation, we
compared the prediction performance in the space-time
domain of 3 methods: kriging using either only hard
data (HK) or hard and mid interval soft data (HMIK),
and Bayesian maximum entropy (BME) using probabi-
listic soft data. We found that BME was less biased,
more accurate and giving estimates, which were better
correlated with the observed values than the two kriging
techniques. In addition, BME allowed one to delineate
with better detail saline from non-saline areas.

Keywords Bayesian maximum entropy � Electrical
conductivity � Geostatistics � Kriging �
Soil salinity � Space–time variability

Abbreviations BME Bayesian maximum entropy �
EC Electrical conductivity � HK Kriging with hard
data � HMIK Kriging with hard and mid interval soft
data � ME Mean error � MSE Mean square error �
R Pearson correlation coefficient

1 Introduction

Worldwide, soil salinity (especially sodium salinization)
is a major hazard to agriculture. It is a main limit-
ing factor for agricultural productivity as salts cause
limited uptake of water by plants and soluble or
adsorbed sodium disperses soil aggregates, creating a
weak structural stability, low hydraulic conductivity and
reduced infiltration rate. In addition, leached salts may
reach the ground and surface waters and contribute to
pollution.

Consequently saline and sodic soils need specific
management approach. This approach is based largely
on the exact determination of the magnitude and the
extent of soil salinity in space as well as in time.

Conventionally (Soil and Plant Analysis Council
1992) soil salinity is determined by laboratory analysis
(electrical conductivity of saturated soil paste extract,
ECe). This procedure is expensive and time consuming.
Alternatively soil salinity can be evaluated in the field
(bulk soil or apparent electrical conductivity, ECa)
using, for example, electrode probes or electromagnetic
induction techniques. The field approach is cheaper and
easier than the laboratory analysis and, as a conse-
quence, it is now widely used for monitoring soil salinity
in space and time.

The appraisal of space-time variability of soil salinity
has been approached in different ways. Lesch et al.
(1998) used a classical statistical method by which they
tried to detect if there is a temporal change in soil
salinity between two time instants. The drawbacks of
this approach are that they needed to repeat the analysis
many times as they compared only two time instants. In
addition the temporal autocorrelation, which may exist
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between two or more successive measurements, was not
accounted for.

An alternative to this approach has been proposed by
Douaik et al. (2003). They first rescaled ECa into ECe

using a simple regression model, then they applied
space-time kriging to the new data matrix of ‘estimated
ECe’. They were able to include the spatial as well as the
temporal dependencies in their analysis, which repre-
sents an advantage over the approach of Lesch et al.
(1998). However as ECe data are only estimates, they are
not precise and entailed with uncertainty that needs to
be taken into account.

In this work we use the Bayesian maximum entropy
(BME) (Christakos 1990; Serre et al. 1998) framework to
rigorously analyze our data by formally incorporating
the difference in accuracy between laboratory and field
soil salinity. The former is an accurate measure and can
be considered as hard data and the latter is a cheaper
and less accurate measurement of soil salinity that can
be considered as soft data.

The BME framework is a spatio-temporal estimation
method of modern geostatistics that can incorporate a
wide variety of knowledge bases (statistical moments of
any order, multipoint statistics, physical laws, hard and
soft data, etc.) and kriging is considered to be a special
and limiting case of it under restrictive assumptions
about the knowledge base considered.

BME has been successfully applied in different areas.
D’Or et al. (2001), Bogaert and D’Or (2002), and D’Or
and Bogaert (2003) mapped soil texture using BME in
the space domain. Serre and Christakos (1999) studied
the water-table elevations of an aquifer in Kansas while
Christakos and Serre (2000) analyzed the distribution of
particulate matter in North Carolina. These two studies
have been done in the space-time context. Bogaert
(2002) extended the approach to include categorical
variables.

The main objectives of this study are: (i) to apply
BME to a space–time soil salinity data set, (ii) to
determine the probability that soil can be considered
saline in a study site, and (iii) to compare BME with two
kriging techniques.

2 Data description

The study area, which covers around 25 ha, is located in
the Hortobagy National Park (47�30¢ N and 21�30¢ E), a
small zone of the larger Great Hungarian Plain, in the
east of Hungary.

Soil salinity/sodicity and its correlation with the
vegetation have been studied in the area by many
researchers, among them Tóth et al. (1991, 2002), and
Van Meirvenne et al. (1995).

Two data sets were available. The first, called ‘data
set to be calibrated’, consisted of the values of the
apparent electrical conductivity (ECa, dSm)1) which
were measured using electrical probes equipment (with 4
probes) at 413 locations (Fig. 1). The probes were

inserted in the soil to two depths (8 and 13 cm), which
correspond to ECa measured over 0–20 and 0–40 cm soil
depths respectively. These data and statistical parame-
ters derived from them are called soft data since the field
measured ECa is determined, not only by the ECe of the
soil, but also by the soil moisture content, temperature,
particle size distribution, etc.

The second data set, termed ‘calibration data set’,
which is a subset of the first (13 to 20 locations) involves
(in addition to ECa) the measurements of soil salinity in
1:2.5 soil suspensions in the laboratory (EC2.5, a simple
proxy for ECe, in dS m)1), the soil moisture content
(%), and the soil pH. The soil samples were taken at 4
depths from 0 to 40 cm with an increment of 10 cm. At
each location and for each depth, two augerings were
bulked to get a soil sample. The locations for this data
set were selected using the response surface design
algorithm (Lesch et al. 1995) in such a way that the
selected samples were representative of all other loca-
tions from two points of view: the spatial configuration
and possible salinity. The EC2.5 data were considered to
be hard data, since they were measured with high pre-
cision in standard laboratory conditions.

The whole process was repeated in time, from
November 1994 to June 2001, at 19 time instants, with
an average temporal lag of 3 months but intervals
ranging from 2 to 9 months.

3 Bayesian maximum entropy approach

The concept of BME appeared more than one decade
ago (Christakos, 1990) and was continuously developed
and expanded (Christakos 1998, 2000; Christakos and Li
1998). It involves three basic steps.

The space-time random field (STRF) representing
soil salinity is denoted by X(p), with p ¼ (s,t) where s

denotes the spatial coordinates and t the temporal
coordinate. In our case, the general knowledge G con-
sists of the mean

mX ðpÞ ¼ E½X ðpÞ�

Fig. 1 Spatial location of the samples where ECa was mea-
sured. The calibration data set is a sub-sample of these loca-
tions
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and covariance

cX ðp; p0Þ ¼ Ef½X ðpÞ � mX ðpÞ�½X ðp0Þ � mX ðp0Þ�g
where E denotes the stochastic expectation. The mean
function represents the trends and systematic struc-
tures, and the covariance function expresses spatio-
temporal interaction and dependencies. The vector of
random variables xmap ¼ ðx1; x2; . . . ; xmh; xmhþ1; . . . ;
xm; xkÞ represents the random field X(p) at the mapping
points pmap ¼ ðphard; psoft; pkÞ, where phard ¼ ðp1; p2;
. . . ; pmhÞ are the hard data points, psoft ¼
ðpmhþ1; pmhþ2; . . . ; pmÞ are the soft data points, and pk
is the estimation point; such that xmap ¼ ðxhard;
xsoft; xkÞ ¼ ðxdata; xkÞ. The vector of values corre-
sponding to a specific realization of xmap is denoted
vmap ¼ ðvhard; vsoft; vkÞ.

At the prior step, the objective is to maximize the
information content using only G. The expected infor-
mation is:

E½InfoðxmapÞ� ¼ �
Z

ln½fGðvmapÞ�fGðvmapÞ dvmap ð1Þ

where fGðvmapÞ represents the prior probability density
function (pdf) of xmap.

The maximization is done under the set of constraints

E½ga� ¼
Z

gaðvmapÞfGðvmapÞ dvmap; a ¼ 0; . . . ;Nc

with ga the chosen functions such that their expectations
E½ga� are space–time statistical moments known from the
general knowledge (Serre and Christakos 1999). In our
case:

g0ðvmapÞ ¼ 1) E½g0� ¼ 1;

which is a normalization constraint,

gaðviÞ ¼ xi ) E½ga� ¼ E½xi�;
mean at point pi, a ¼ 1; . . . ; mþ 1,

gaðvi; vjÞ ¼ ½vi � EðxiÞ� ½vj � EðxjÞ� )

E½ga� ¼ Ef½xi � EðxiÞ� ½xj � EðxjÞ�g;
covariances cðxi; xjÞ with a ¼ mþ 2; . . . ; ðmþ 1Þ
ðmþ 4Þ=2:

When Eq. (1) is solved, the G-based multivariate pdf
is as follows

fGðvmapÞ ¼ Z exp½RlagaðvmapÞ� ð2Þ
where Z ¼ expðl0Þ is a normalization constraint, and la
the Lagrange multipliers.

At the meta-prior stage, the site-specific knowledge S
is collected and organized. In our case it involves the
following hard and probabilistic soft data

S : vdata ¼ ðvhard;vsoftÞ ¼ ðv1; v2; . . . ; vmh; vmhþ1; . . . ; vmÞ;
where the hard data xhard ¼ ðx1; x2; . . . ; xmhÞ are the soil
electrical conductivity measured in the laboratory with
mh ¼ 13 to 20 depending on the time instant; and the
soft data have the specific pdf fSðnÞ expressed as

vsoft : PSðxsoft <¼ nÞ ¼
Zn

�1

fSðvsoftÞdvsoft

During the last step, called integration or posterior
stage, the prior pdf is updated considering the site-spe-
cific knowledge S available. The objective is cogency
(maximization of the posterior pdf given the total
knowledge K ¼ G [ SÞ. This step leads to the K-based
pdf

fKðvkÞ ¼ A�1
Z

fGðvmapÞ dvsoft ð3Þ

where A ¼
R

fGðvdataÞdvsoft is a normalization coefficient
and both the integrations are in the definition domain I
for the probabilistic soft data vsoft.

The substitution of the G-based pdf, Eq. (1), into the
K-based pdf, Eq. (3), leads to the posterior or BME pdf

fKðvkÞ ¼ ðAZÞ�1
Z

exp½RlagaðvmapÞ�dvsoft

This pdf rigorously incorporates the space-time
dependency of the data and the difference in accuracy
between the hard and soft data. It is in general non-
Gaussian, and provides a full stochastic description of
the estimated value at the estimation point, which
constitutes a crucial advantage over kriging, as for the
latter the difference between hard and soft data is ig-
nored, and we can only obtain the estimate and its
variance. From the posterior pdf (3) we can compute
different statistics, such as the conditional mean, the
mode, the median or any other quantile. The uncer-
tainty can be assessed using the variance of the pos-
terior pdf, or better the BME confidence interval (Serre
and Christakos 1999).

4 Data analysis

The distributions of both ECa and EC2.5 were skewed.
Therefore we applied a natural logarithmic transfor-
mation to both variables to obtain less asymmetric dis-
tributions.

The structural analysis (data detrending, experimen-
tal and fitted covariograms) has been reported elsewhere
(Douaik et al. 2003). By way of summary, the steps of
the structural analysis are as follow:

� The space-time mean trend of the log-transformed
salinity is estimated. The smoothed spatial compo-
nents were computed using an exponential spatial
filter applied to the averaged measurements (for each
location, over all the time instants). We computed
also the smoothed temporal components using an
exponential temporal filter applied to the averaged
measurements (for each time instant, over all the
locations);

� These components were interpolated to the data grid
giving the space–time mean trend m(p);
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� The residuals were calculated as the space–time mean
trend subtracted from the original log-transformed
data: Rðs; tÞ ¼ RðpÞ ¼ X ðpÞ � mðpÞ

� The residuals were used to compute the spatio-tem-
poral covariogram:

cRðr; sÞ ¼ cov½Rðsþ r; t þ sÞ;Rðs; tÞ�
r and s are the spatial and temporal lags, respectively,
and cov is the covariance function.

� Finally we fitted a theoretical model to the computed
experimental covariogram The mean trend and the
covariance function obtained in the structural anal-
ysis were used as general knowledge for all three of
the space-time interpolation methods presented in
this study.

Next we organized the site-specific knowledge
into hard and soft data of soil salinity. The hard data
were the measurements of EC2.5, which provide accurate
values for the soil salinity. The soft data (interval mid-
points as well as probabilistic pdf) were obtained from
regression equations. As we had a ‘calibration data set’,
we used the pairs of data ECa)EC2.5, to determine the
calibration equations, one for each time, by computing
simple ordinary least squares regression models:

logðEC2:5Þ ¼ aþ b logðECaÞ
with a: the intercept, and b: the slope.

Using the calibration equations and applying them to
the ‘data set to be calibrated’, we obtained the lower and
upper 95% confidence intervals at the locations and time
instants where measurements of ECa were available. The
interval midpoint data used in method (2) were calcu-
lated simply as the average of the lower and upper limits.
Using the same calibration equations, the expected val-
ues and their corresponding standard errors for the 413
locations and 17 time instants used for the computations
were determined. These two statistics were used to
determine the soft pdfs assuming a Gaussian distribu-
tion for each of the 413� 17 points. These soft pdfs were
used as probabilistic soft data in the method (3). For
illustration, the probabilistic soft data for some points
are reported in Fig. 2.

The soft data from location 1 at November 1994 is
smaller in magnitude than the 3 others, however it is less
uncertain as its pdf is less dispersed around the mean
value.

Because BME processes the full pdf of the soft data
rather than just the mid point of its confidence interval,
it uses more information, which will lead to more
accurate estimations.

Using the hard and soft data, we compared 3 meth-
ods of space-time data interpolation: (1) classical
ordinary kriging using only the hard data (HK); (2)
kriging using hard data and the interval soft data mid-
points (HMIK); and (3) BME using hard data and the
full probabilistic soft data.

BME was presented in Sect. 3. Kriging is, in what
follows, described briefly (Christakos, 2000). When the

site-specific knowledge is limited to a set of hard data
vhard of the variable X(p) at the space-time points pi,
(i ¼ 1, ..., m), the best minimum mean squared error
(MMSE) estimator of X(pk) at point pkðk 6¼ iÞ, is the
conditional mean

vk;MMSE ¼ E½X ðpkÞjvhard� ð4Þ

When the space–time random field is Gaussian, Eq. (4)
becomes linear and optimal among all MMSE estima-
tors, and expressed as

vk;MMSE ¼ k0vhard

where k is a vector of weights associated with the
data points and involving the space–time mean and
covariance functions. This estimator corresponds to
the BME mode estimate when the general knowledge
corresponds to space-time mean and covariance
functions (in this case the pdf is Gaussian and its
mean is equivalent to its mode), and site-specific
knowledge is reduced to the hard data. The only dif-
ference between HK and HMIK is the availability of
hard data; for HMIK, there is more data available
since the mid interval of soft data is considered as
hard data.

To compare the different approaches, we used the
cross-validation procedure for one time instant: the
sampling campaign no. 18 which has not been used in all
the previous computations (structural analysis and
neighborhood). Therefore we estimated soil salinity at
each of the 19 locations, for which we have the observed
measurements, by deleting in turn the value of each
location where the estimate is being calculated.

At the end of this step, 19 pairs of estimated-observed
soil salinity values existed. From these we determined
three quantitative criteria: the mean error (ME), the
mean square error (MSE), and the Pearson correlation
coefficient (R). ME should be near zero for a non biased
estimator, MSE must be as small as possible for an
accurate estimate, and R, which measures the linearity
between the estimated and the observed values, should
be close to one with a small ME.

Fig. 2 Examples of probabilistic soft data (based on the
residuals). Full curve: location 1 in November 1994; dashed
curve: location 2 in March 1995; dash-dotted curve: location 3
in June 1995; dotted curve: location 4 in September 1995
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Additional to the above statistics, the distribution of
the estimation errors was presented graphically for a
visual comparison of the 3 methods.

The validation study was followed by predicting soil
salinity for time instant no. 12 (September 1998) along
with the corresponding estimation variances. The data
for this time instant were included in the structural
analysis. We used a fine estimation grid (10 � 10 m).
The probability that the soil salinity could exceed
4 dS m

)1

was mapped, 4 dS m
)1

being the threshold
between saline and non-saline soils (Spaargaren 1994;
USDA 1996).

All the computations were done using the BMElib
toolbox (Christakos et al. 2002) working under Matlab
(MathWorks 1999).

5 Results and discussion

5.1 Exploratory data analysis

Some statistics about the hard data (EC2.5) are reported
in Table 1. There is a significant temporal variability in
the soil salinity as it is indicated by the differences
between mean values (ranging from 1.42 dS m)1 for
November 1994 to 3.30 dS m)1 for September 1998). It
was also noted the presence of a strong spatial vari-
ability. For example in December 2000, there was a big
difference between the extreme values (minimum: 0.12,
maximum: 7.50 dS m)1).

Pearson correlation coefficients between ECa and
EC2.5 indicated a strong correlation between these two
variables as it ranged between 0.83 and 0.97.

5.2 Structural analysis

The space–time covariance cRðr; sÞ of the log-trans-
formed mean-trend removed salinity STRF R(p), is
shown in Fig. 3a as a function of the spatial lag r (for
s ¼ 0), and in Fig. 3b as a function of the temporal lag s
(for r ¼ 0). The experimental covariance values that
were obtained using the BMElib library (Christakos et
al. 2002) are shown with circles. The covariance model
selected to fit these experimental values is the following

non-separable space–time model that is the sum of two
nested exponential models

cRðr; sÞ ¼ c01 expð�3r=as1Þ expð�3s=at1Þ
þ c02 expð�3r=as2Þ expð�3s=at2Þ

where c
01
and c

02
are the sills of the nested models, as

1
and

as
2
their spatial ranges, and at

1
and at

2
their temporal

ranges. This model is shown in Fig. 3a and b, and the
function of both r and s in Fig. 4.

The non-separable space–time covariance of Fig. 4
provides a more accurate representation of the correla-
tion structure of salinity in both space and time than
that described by a purely spatial covariance model, or a
covariance model where time is taken as an additional
spatial coordinate. Its parameters are reported in
Table 2. The first nested model corresponds to short-
scale fluctuations with spatial range of 250 m and a
temporal range of 8 months, and it has a sill of 0.27
(dS m)1)

2

that explains a large part of the total salinity
variance (0.34 dS m)1)

2

. The second nested model cor-
responds to large-scale fluctuations that are greater than

Table 1 Statistical parameters of salinity data (EC2.5 in dS m)1)

EC2.5 N Mean Std Min Max R

Calibration data
Nov-94 13 1.42 0.34 0.86 1.82 0.85
Mar-95 20 2.29 0.7 1.37 3.6 0.91
Jun-95 20 2.02 1.1 0.58 4.24 0.88
Sep-95 20 2.01 0.99 0.83 4.56 0.94
Dec-95 20 1.84 0.9 0.74 3.33 0.92
Mar-96 16 2.07 0.81 0.86 3.43 0.87
Jun-96 20 1.83 0.9 0.63 3.49 0.87
Mar-97 20 1.61 0.63 0.43 2.63 0.89
Jun-97 15 1.77 0.97 0.47 3.59 0.83
Sep-97 20 1.63 1.24 0.15 4.4 0.94
Dec-97 20 1.6 1.04 0.14 3.75 0.9
Sep-98 20 3.3 2.17 0.31 7.26 0.85
Apr-99 20 1.84 1.74 0.17 6.58 0.93
Jul-99 13 2.27 1.57 0.39 5.25 0.91
Sep-99 20 2.29 1.89 0.12 6.64 0.91
Apr-00 18 2.11 1.63 0.1 6.42 0.94
Dec-00 20 2.32 1.91 0.12 7.5 0.93

Validation data
Mar-01 19 1.80 1.21 0.16 4.58 0.97

N number of observations, std standard deviation, min minimum,
max maximum, R correlation coefficient between ECa and EC2.5

Fig. 3 a Spatial covariance;
b temporal covariance.
Circles: experimental data;
curve: fitted model
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the spatial and temporal size of the study area, with
spatial range of 1500 m and a temporal range of
200 months. This nested model has a sill of only 0.07
(dS m)1)

2

, which explains a smaller part of the total
salinity variance.

5.3 Cross-validation results

Using the theoretical space-time covariance, we pre-
dicted soil salinity at the 20 locations where observed
values were available, for the sampled time instant no.
18 (March 2001), using the three different approaches
discussed above. Table 3 summarizes the ME, MSE and
R for these approaches.

All the ME values are not significantly different from
zero. This conclusion was reached using Student t test
for correlated samples (McClave and Sincich 2000;
p391). However those for HK and BME are smaller
than the one corresponding to HMIK. Thus we got
indications of less biased estimates with BME and hard
kriging compared to kriging using hard and soft data.

The smallest MSE corresponds clearly to BME and
the largest to HMIK while HK is intermediate. This
means that BME is more accurate than HK which, in

turn, is more accurate than HMIK. The results reflect
the additional contribution of probabilistic soft data, in
the BME approach, to the estimation of the scarce
laboratory soil salinity (hard data). HMIK is the worst
even if it uses the additional data. This is due to the fact
that it used only the mid intervals ignoring the uncer-
tainty related to, and the width of, these intervals. These
results showing that BME performs better than kriging
are in agreement with the results obtained by D’Or and
Bogaert (2001) in the context of soil texture mapping,
and by Serre and Christakos (1999) in the context of
water surface elevation mapping in aquifers.

The Pearson correlation coefficients between mea-
sured and estimated data increased with the incorpora-
tion of the soft data. It changed from 0.87 for HK, to
0.92 for HMIK, and finally to 0.94 for BME. This again
confirms the usefulness of the soft data and more pre-
cisely, the importance in the way that they were pro-
cessed.

The distributions of the estimation errors are
reported in Fig. 5. The curve for BME has a higher peak
around zero, meaning that the estimates are more
accurate using BME than for the two other methods.
This finding corroborates the conclusions reached with
MSE. D’Or et al. (2001) arrived at the same results when
they compared kriging with hard data and BME with
interval soft data applied to soil texture in the spatial
domain.

5.4 Space–time mapping of soil salinity

We predicted the soil salinity for September 1998 to
compare the three methods presented in this
study graphically. The soil salinity maps are given in
Fig. 6 and their corresponding estimation variances in
Fig. 7.

The soil salinity is strongly smoothed in the map
obtained by HK. This is the consequence of the limited
number of hard data (19, in fact as we interpolated in the
space-time domain, we have the 19 locations of some
previous time instants as well; however, geographically,
we used the same 19 locations). In contrast, the maps of
HMIK and BME show much more detail due to the
additional data (‘hardened’ for HMIK or used as soft

Fig. 4 Spatio-temporal covariance of the residual data R(s,t)

Table 2 Parameters of the fitted spatio-temporal covariance model

Component Spatial range
(m)

Temporal range
(month)

Sill
(dS m)1)2

First nested model 250 8 0.27
Second nested model 1500 200 0.07

Table 3 Values for ME, MSE, and R for soil salinity computed
from the three approaches

Criterion/method HK HMIK BME

ME )0.176 )0.323 )0.173
MSE 0.489 0.650 0.254
R 0.87 0.92 0.94

Fig. 5 Estimation error distribution for HK, HMIK, and BME

224



for BME). Furthermore, for the BME, we mapped the
conditional mean (minimizing a least square criterion)
(Fig. 6c) as well as the mode (the most probable value)

of the posterior pdf (Fig. 6d). The map of the BME
mode estimate is less smooth than that of the BME
mean estimate.

Fig. 6 Soil salinity (EC2.5 in
dS m)1) estimates for Sep-
tember 1998; a HK,
b HMIK, c BME mean,
d BME mode. On the maps,
triangles and circles indicate
points where hard and soft
data were available,
respectively

Fig. 7 Soil salinity estima-
tion variances for September
1998; a HK, b HMIK,
c BME
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The estimation variance maps (Fig. 7) reflect the
difference in data availability. The HK map shows a zero
estimation variance at the locations where hard data
were present, and a gradual increase in the estimation
variances as one goes further away from these hard data
locations. In the case of HMIK, the estimation variance
is zero for the hard as well as soft data points, resulting
in a small estimation variance for the entire study area
(except in the centre where the locations are more
spaced), which results in an under-prediction of the true
uncertainty. On the other hand, BME map has a zero
estimation variance at the hard data points only, and a
small but non-zero estimation variance at the soft data
points, which is a better representation of the true
uncertainty in the estimated map.

We also mapped the probability that the estimated
soil salinity exceeds 4 dS m)1, a critical threshold sepa-
rating non-saline from saline conditions (Fig. 8). As the
estimation standard errors for HK are higher than those
for HMIK and BME, and as the estimated soil salinity is
smoothed, a larger area of saline soil was delineated. In
contrast we obtained, for HMIK and BME, clearly
delimited and smaller areas of saline soil.

6 Conclusions

The main objective of this work was to compare the
prediction performance of BME using uncertain soft

data with two kriging techniques. This evaluation was
done by means of cross-validation procedure for one
time instant which had not been used in the previous
steps of the analysis.

This study shows that BME can readily be applied to
a soil space–time data set. We conclude that BME esti-
mates were less biased compared to HMIK, and more
accurate and better correlated with the observed values
than the two kriging approaches. Also the BME esti-
mation error distribution showed a higher peak around
zero than the two other techniques, indicating that the
probability of obtaining an estimate equal to the ob-
served soil salinity is higher for BME than for the two
versions of kriging. In addition, BME allows one to
delineate more rigorously saline areas from non-saline
zones.

This study demonstrated the possibility of using
cheap, dense and easily obtained data (like ECa), to
estimate with less bias and more accuracy, a scarce, time
consuming and expensive soil property of interest (such
as EC2.5).
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