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Abstract

We used geostatistical tools to identify the spatio-temporal variability of soil salinity with both field and laboratory

measurements. This analysis used kriging and Bayesian maximum entropy (BME) to predict soil salinity at unobserved spatial

locations and time instants. We compared the accuracy of the mapped predictions from BME using soft interval data, kriging

with either hard and soft data (HSK), or hard data only (HK). A large spatio-temporal database on soil salinity data was

available. It consists of 413 sites where the apparent or bulk soil electrical conductivity (ECa) was measured with electrical

probes over an area of 25 ha. These measurements are our ddata set to be calibratedT. On a limited subset of these sampling sites

(13–20), electrical conductivity was determined by laboratory analysis from 1:2.5 soil–water suspensions (EC2.5), which is a

simple representation of the electrical conductivity of the water-saturated soil-paste extract (ECe). These are our dcalibration data
setT. The whole procedure was repeated 19 times between November 1994 and June 2001.

The methods of prediction were compared quantitatively by mean error (ME) and mean squared error (MSE). The errors are

the differences between the measured electrical conductivity in the laboratory on samples fromMarch and June 2001 (which were

not used in previous computations) and their cross-validation estimates. The MSE was divided further into three components

revealing different aspects of the discrepancy between the observed and the estimated values of electrical conductivity. The BME

predictions were less biased andmore accurate than those from kriging. TheMSE decomposition showed that the kriging with soft

data (HSK) provided more biased estimates and failed to reproduce the magnitude of fluctuation in the observed soil salinity. The

difference in incorporating soft data into the analysis was confirmed and was more acute when only the largest intervals from the

soft data were used. In this situation BME produced very reliable estimates whereas HSK failed to predict soil salinity accurately.
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1. Introduction

Soil salinity limits food production in many

countries of the world. There are mainly two kinds

of soil salinity: naturally occurring dryland salinity

and human-induced salinity caused by the low quality

of water. In both cases the development of plants and

soil organisms are limited leading to low yields. In

Hungary, where more than 10% of the land is affected

by salt, groundwater is the major cause of salinization.

Saline and sodic soils have particular physical and

chemical properties that require specific management.

As a first step for the better management of salt-

affected soils, soil salinity needs to be monitored in

space as well as in time to determine where it is,

where it is spreading to, and the rate at which it is

spreading. Therefore, we need to sample the soil for

laboratory analysis to determine the electrical con-

ductivity of the saturated soil paste extract (ECe). The

latter is a measure of soil salinity. This conventional

procedure (Soil and Plant Analysis Council, 1992) is

expensive, time-consuming, and provides an incom-

plete view of the extent of soil salinity.

An alternative to laboratory analysis is to assess

soil salinity in the field by determining the apparent

electrical conductivity (ECa). This can be done using

sensors such as the four-electrode probes (Rhoades

and van Schilfgaarde, 1976) or by electromagnetic

induction instruments (McNeil, 1980). This proce-

dure is cheaper and less time-consuming than the

conventional one and the sensors can be mounted on

a small vehicle enabling a more intensive survey of

the study area.

Lesch et al. (1998) used a classical statistical

method to monitor the temporal change of soil salinity

between two time periods. The approach can be

applied easily to a few measurement times. However

it is of limited practical use for many time periods as

the procedure must be repeated for each pair of times.

In addition, the technique takes no account of any

possible temporal correlation between two or more

successive measurements.

Douaik et al. (2004) proposed an alternative

approach. They rescaled the ECa measurements into

EC2.5 (the electrical conductivity determined by

laboratory analysis from 1:2.5 soil–water suspen-

sions, which is a simple representation of the electrical

conductivity of the water-saturated soil-paste extract,
ECe) using calibration equations based on regression

models. This was followed by spatio-temporal kriging

to predict soil salinity at unknown places and times.

The approach takes into account the spatial and the

temporal correlations between the soil salinity meas-

urements. However, the resulting EC2.5 values from

the calibration equations are estimates of the actual

soil salinity. This means that they have some degree of

uncertainty, which needs to be considered in the

analysis.

The method of Bayesian maximum entropy (BME)

(Christakos, 1990, 2000) enabled a rigorous analysis

of our data by distinguishing formally between the

accuracy of the laboratory and the field electrical

conductivity measurements. The former are direct and

accurate measurements of the soil salinity; they are

considered as hard data. The latter are indirect

measurements that represent uncertain estimates of

soil salinity. They provide less accurate values of soil

salinity and can be considered as soft data.

Bayesian maximum entropy provides a general

framework for space–time interpolation. It can incor-

porate different physical knowledge bases such as

statistical moments (not limited to the second-order),

multipoint statistics, physical laws, hard and soft data,

etc. Kriging, the classical geostatistical method of

interpolation, is a special case of BME. When

physical knowledge is restricted to the second-order

statistical moments (mean and covariance or vario-

gram functions) and to the hard data, kriged and BME

predictions are equivalent (Christakos and Li, 1998;

Lee and Ellis, 1997).

This study has two main objectives: (i) to apply

the BME method to soil data using interval soft data

and (ii) to compare the prediction performance of

BME with two types of kriging: ordinary kriging

with hard data only (HK) and ordinary kriging with

hard data and the mid-interval of the soft data

(HSK).
2. Materials

2.1. Study site description

Salt-affected soils cover more than 1 million

hectares in Hungary and more than 95% of these soils

are in the Great Hungarian Plain (GHP) (Szabolcs,
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1989). The Hortobagy National Park (HNP) forms a

subregion of this plain. The characteristic soil-forming

loess material of the GHP was deposited during the

Quaternary period in the glacial eras. Water also

played a decisive role in the formation of the parent

material (Tóth et al., 1991). The elevation of the HNP

ranges from 88 to 92 m. However, Tóth and Rajkai

(1994) noted that even a small difference in elevation

(of the order of 10�1 m) results in large difference in

salt accumulation. The drought index, the ratio of

potential evaporation to precipitation, exceeds unity

for eight months of the year (from March to October).

This has an important impact on the salinization of the

area.

Hortobagy is a discharge area of saline ground-

water originating from the northern mountains. This

groundwater is the main source of salt accumulation

in the area. Waterlogging induces a rise in the

groundwater level during the wet season. This results

in a flow towards salic solonetz elevated zones (Tóth

and Jozefaciuk, 2002). During the dry season,

however, the groundwater level is lowered and salts

remain in the upper horizons. Water table depth has

played a major role in the formation of salt-affected

soils in the GHP.
Fig. 1. Sample locations. Circles are the locations of the sof
2.2. Data description

The study area covers about 25 ha and is located

in the HNP (47830W N, 21830W E), in the east of

Hungary. The locations of the sampling sites are

shown in Fig. 1.

Initially the sampling design was chosen so that

any temporal change in soil salinity between two

sampling campaigns could be determined. The first

data set, the ddata set to be calibratedT, comprises

measurements of apparent electrical conductivity

(ECa) in the field at 413 locations. These sites are

more or less on a grid of 25�25 m, with some

locations further apart, mainly in the middle of the

study area. The ECa was measured using a conduc-

tivity meter with four electrodes (Rhoades and van

Schilfgaarde, 1976). The electrodes were inserted in

the soil at two depths: 8 and 13 cm which correspond

to ECa values for the 0–20 cm and 0–40 cm soil

depths. At the calibration sites there were always three

measurements of ECa, but only one for the other sites.

An algorithm was used to select a minimal number

of calibration sites, based on the response surface

design approach (Lesch et al., 1995). The selection

was based on the spatial configuration of locations at
t data and asterisks are the locations of the hard data.
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which ECa was measured and also on the values of

the measurements. They are representative spatially of

the study area and enable accurate estimation of the

calibration parameters. The soil samples at the

calibration points were taken at 10-cm increments to

a depth of 40 cm. The samples were bulked from the

cores of two holes located between the pairs of

electrodes and separated by 50 cm. The selected sites

form our second data set, dcalibration data setT. Soil
samples from these sites were obtained and analyzed

in the laboratory. Samples were air dried and crushed

to pass through a 2-mm mesh. The 1 :2.5 soil–water

suspensions were prepared and pH and electrical

conductivity (EC2.5, dS m�1) were measured after 16

h. The EC2.5 is given after conversion to the standard

temperature of 25 8C. Gravimetric moisture was

determined by drying the soil samples in air-tight

containers at 105 8C.
Sampling the ddata set to be calibratedT and

dcalibration data setT was repeated 19 times from

November 1994 to June 2001. The most frequent

temporal lag was 3 months, but it ranged from 2 to 9

months. The EC2.5, which represents the hard data,

was measured at 13–20 locations, depending on the

sampling period.
3. Methods

3.1. Space–time random field model

The distribution of the electrical conductivity

values in space and time is represented adequately

by a space–time random field (STRF), X(p), which

takes values at points p =(s,t) in a space–time domain,

where s=(s1,s2) represents spatial location and t is the

time (Christakos, 1992). The values taken by the

STRF, X(p), at a given space–time point pi is a

random variable xi =X(p i) and its corresponding

realization is vi. The random field X(p) at m +1

points pi (i =1,. . .,m, k) (m observation points and

one estimation point) is denoted by the random

variables xmap=[x1,. . ., xm, xk]V and their realization

is vmap=[v1,. . . ,vm, vk]V; the prime represents the

transpose of the vector.

A random variable xi may acquire any one value

from a distribution of values. The distribution of

values vi that the random variable xi may take is
described by the cumulative distribution function

(cdf): Fx(vi)=Prob[xiVvi]. The derivative of the

cdf, Fx(vi), with respect to vi is the probability

density function (pdf):

fx við Þ ¼ dFx við Þ=dvi: ð1Þ

The random variable xi is fully described by its cdf

or pdf.

The random field X(p) is a collection of random

variables xmap= [x1,. . ., xm, xk]V at points pi (i =

1,. . .,m, k). It is completely described by the multi-

variate cdf:

Fx v1; v2; . . . ; vm; vkð Þ

¼ Prob x1Vv1; x2Vv2; . . . ; xmVvm; xkVvk½ �: ð2Þ

Its derivative with respect to vmap=[v1,. . . ,vm, vk] is

the multivariate pdf:

fx v1; v2; . . . ; vm; vkð Þ ¼ dmþ1Fx v1; v2; . . . ; vm; vkð Þ
=dv1dv2 . . . dvmdvk : ð3Þ

As the multivariate pdf is, in general, not known a

priori, the random field can be characterized by its

moments of order one, which is the mean function,

mx(p), and/or order two, which is the covariance

function, cx(p,pV).
If the two moments are invariant for all translations

in space and time, the STRF is spatially homogeneous

and temporally stationary. In this case the mean

function is constant and the covariance function

depends only on the spatial lag r= s� sV and temporal

lag s = t� tV between any two points p =(s, t) and

pV=(sV, tV):

cx p; pV
� �

¼ cx s� sV; t � t VÞ ¼ cx r; sð Þ:
�

ð4Þ

The random field is said to be isotropic when the

covariance function depends only on the spatial

separating distance and not on its direction:

cx r; sð Þ ¼ cx jrj; sð Þ: ð5Þ

The STRF is spatially homogeneous and tempo-

rally stationary only if any spatial or temporal trend

is absent. In the presence of trends the mean and

covariance functions depend on the location and

time of measurements and the covariance function

does not tend towards zero as the spatial or
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temporal lag increases. The trend can be estimated

(see Section 3.3) and subtracted from the original

spatially non-homogeneous and temporally non-sta-

tionary random field to obtain a residual random field,

R( p), that is now spatially homogeneous and tempo-

rally stationary:

R pð Þ ¼ R s; tð Þ ¼ X pð Þ � mx pð Þ: ð6Þ

Kriging is a well-known geostatistical prediction

technique (Goovaerts, 1997) and so is not discussed.

Bayesian maximum entropy is a more recent approach

and we describe it briefly in the following section.

3.2. Bayesian maximum entropy

The BME approach, promoted by Christakos

(1990, 2000), provides a systematic and rigorous

way to incorporate soft data and other sources of

information, in addition to hard data, into the analysis.

In space–time mapping we want to predict the

values of the random field, X(p), at a point,

pk(k p i =1, . . .,m), given data at space–time points,

pi (i=1,. . .,m). The joint cdf for the m data points and

the prediction point, pk, is defined by Eq. (2) and its

corresponding pdf by Eq. (3). This pdf forms the prior

pdf. It should be derived by an estimation process that

takes into account physical constraints given by prior

information or knowledge. In the BME context,

Shannon’s information criterion (Shannon, 1948) is

used as a measure of information:

Info xmap

� �
¼ � log fG vmap

� �� �
; ð7Þ

where fG(vmap) has the same definition as Eq. (3),

except that x is replaced by G. This means that the pdf

is defined based only on general knowledge, before

any use is made of the site-specific data. The expected

information is defined as:

E Info xmap

� �� �
¼ �

Z
log fG vmap

� �� �
fG vmap

� �
dvmap:

ð8Þ

Eq. (8) is the Shannon entropy function. The

expected information or, conversely, the entropy

function needs to be maximized.

As the estimator, X̂(pk), of the random field, X(p),

at the point, pk, is in general expressed in terms of

expectations of some function of X(p) (not limited to
linear combinations), the physical constraints imposed

by G are given by:

E ga½ � ¼
Z

ga vmap

� �
fG vmap

� �
dvmap; a ¼ 0; . . . ;Nc

ð9Þ

where ga are functions chosen such that the general

knowledge base, G, is taken account of in full in the

prediction process, and their expectations, E[ ga],

provide the space–time statistical moments of interest.

The BME analysis is done in three main stages

(Christakos, 1998, 2000):

(1) Structural or prior stage: The goal is to

maximize the information content using the general

knowledge only. The total physical knowledge in the

BME context includes site-specific and general knowl-

edge. The latter, denoted G, includes general informa-

tion that can characterize more than one STRF, such as

physical laws, statistical moments, multipoint statis-

tics, etc. In our case G represents the moments of order

two (space–time mean and covariance functions). Eq.

(10) gives the prior (or G-based) multivariate pdf:

fG vmap

� �
¼ Z�1exp

XNc

a¼1

laga vmap

� �" #
ð10Þ

where Z =exp(�l0) is a normalization constant and

la are Lagrange multipliers.

(2) Meta-prior stage: In the BME framework vmap

includes the data values and the value to be predicted:

vmap=[vdata, vk]V. The data vector, vdata= [v1,. . .vm]V,
forms the available data, or site-specific knowledge

denoted by S. The total knowledge is K =G[S. The

available data can be divided into two main types:

Hard data: vhard= [v1 ,. . . ,vh]V and
Soft data: vsoft = [vh+1 ,. . .,vm]V, such that vdata

=[vhard,vsoft]V.

In our case study, EC2.5 are the hard data available

at up to h =20 locations in space. The lower and upper

confidence interval limits, calculated with the calibra-

tion equations, form the soft data. As we have soft

interval data, vsoft can be written as:

vsoft ¼ vhþ1; . . . ; vm
� �V

: viaIi ¼ li; ui½ �;
n

i ¼ hþ 1; . . . ;m
o
: ð11Þ
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This means that the unobserved exact values vi

have probabilities of one within known intervals Ii
with li and ui the lower and upper limits, respectively.

(3) Integration or posterior stage: In this last step

the two knowledge bases (G and S) are integrated.

The aim is to maximize the posterior pdf given the

total knowledge K. The prior pdf is updated by taking

into account the available site-specific knowledge (the

data). The posterior and the prior pdfs are related

through the conditional probability law (Christakos,

1990), based on Bayes theorem, hence B in BME:

fK vk jvdatað Þ ¼ fG vmap

� �
=f vdatað Þ; ð12Þ

where fK(vk|vdata) and fG(vmap) are the posterior and

the prior pdfs, respectively.

The posterior pdf should be maximized with

respect to vk. This stage gives the K-based pdf:

fK vkð Þ ¼ A�1

Z
I

fG vmap

� �
dvsoft; ð13Þ

where A ¼
R
I
fG vdatað Þdvsoft is a normalization coef-

ficient and both of the integrations are in the defined

domain for the soft interval data, Eq. (11), such that

I = Ih+1[ Ih+2[. . .[Im. When we substitute the prior

pdf (Eq. (10)) into the K-based pdf (Eq. (13)), we get

the posterior or BME pdf:

fK vkð Þ ¼ AZð Þ�1

Z
I

exp
XNc

a¼1

laga vmap

� �" #
dvsoft:

ð14Þ

This posterior pdf, which is not necessarily

Gaussian, describes fully the STRF at the target point.

It provides a complete picture of the prediction

situation, instead of one statistic (the expected value),

as the full statistical distribution is defined as well as

the different estimators of the STRF and the estima-

tion uncertainty. Among the possible estimators, the

mode represents the most probable realization. It is the

value that maximizes the posterior pdf. The mean

estimate is defined as:

x̄kjK ¼
Z

fK vkð Þvkdvk : ð15Þ

It is, in general, a nonlinear function of the

available data and is suitable for situations where

one is interested in minimizing the mean squared

estimation error.
A guide to the uncertainty associated with the

estimated values is given by the variance of the

estimation error. This is provided by BME, which is

data-dependent, whereas in kriging it is data-free.

Moreover, BME enables a more accurate assessment

of the estimation error from the posterior pdf, Eq.

(14). From this, one can calculate the confidence

intervals (Serre and Christakos, 1999), which provide

a more realistic assessment of the estimation error

than the error variance. These intervals need not be

symmetric about the estimated value.

When the general knowledge G is limited to the

first two statistical moments (mean and covariance

functions) and the site-specific knowledge is

restricted to the hard data, the kriged estimates

correspond to the BME mean estimates, Eq. (15).

The difference between the two types of kriging is in

the number of data considered during the analysis.

Ordinary kriging (HK) is limited to the hard data only,

whereas HSK treats both sets of data as hard

essentially.

3.3. Data analysis

All analyses were done on logarithmically trans-

formed EC2.5 and ECa because of the pronounced

skewness of their distributions.

The steps of the structural analysis have been

discussed elsewhere (Douaik et al., 2004) and we

summarize them here:

(1) We estimated the space and time trends of the

log-transformed data. The smoothed spatial

components (one for each location) were calcu-

lated using an exponential spatial filter applied

to averaged measurements over all the time

periods. Also temporal components (one for

each time instant) were computed using an

exponential temporal filter applied to the aver-

aged measurements over all the spatial loca-

tions. More detail on this step is given in the

function dstmeanT in Christakos et al. (2002),

page 160 and in the accompanying CD.

(2) The above components were interpolated to the

data grid giving the space–time trend function.

(3) The trend, mx(p), was subtracted from the

original EC2.5 data X(p), which results in the

residual random field R(p), Eq. (6).
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(4) The residuals were used to compute the space–

time covariance function, cR(r,s), Eq. (4), by

replacing the original random field X(p) with

the residual, R(p). The available data were

sparse and so we were restricted to an isotropic

model, cR(r,s)=cR(|r|,s), Eq. (5).
(5) Finally, we fitted a theoretical model to the

experimental residual covariance function.

Our two data sets were separated into hard and soft

electrical conductivity data. The measurements of

EC2.5, which provide accurate and direct values of soil

salinity, form the hard data. The calibration data set

was used to calculate the soft interval data. The pairs

of data values of ECa and EC2.5 were used to

determine the calibration equations, one for each time

instant, by calculating simple ordinary least squares

regression models:

loge EC2:5ð Þ ¼ aþ bloge ECað Þ; ð16Þ

where a is the intercept and b is the slope of the

regression model.

These calibration equations were applied to the

ddata set to be calibratedT to give the expected

values and their standard deviations for all locations

(413) and 17 time periods; the two remaining

periods (sampling campaigns 18 and 19, which

correspond to March and June 2001, respectively)

were kept for validation. These parameters were

used to determine the 95% confidence intervals;

their lower and upper limits form our soft interval

data.

We compared 3 methods of space–time prediction,

which differ in the way the soft data are processed:

(1) Ordinary kriging using only the hard data (HK),

which provides no direct way of integrating soft

data and ignores them.

(2) Ordinary kriging using hard data and the

midpoint of the soft interval data regards the

latter as if it were a hard datum (HSK) and

disregards their uncertainty.

(3) Bayesian maximum entropy using the hard and

soft interval data (BME), which integrates the

soft interval data in the prediction as they are,

and maintaining the difference in the degree of

uncertainty between hard and soft data.
The methods were compared by cross-validation

with the validation data of sampling campaigns 18

and 19.

3.4. Validation and comparison criteria

Soil salinity was predicted at each of the sites (19

for March 2001 and 20 for June 2001) for which we

had measurements by deleting in turn the value of

each location where the prediction was being made.

This gave pairs of estimated–observed soil salinity

values for the two time periods. Three quantitative

criteria were computed from these pairs of values: the

Pearson correlation coefficient (r), the mean error or

bias (ME), and the mean squared error (MSE). The

first, r, measures the strength of the linear relation

between the estimated and the observed soil salinity

values and should be close to one for an accurate

prediction. The ME should be close to zero and the

MSE should be as small as possible. We also

represented graphically the distribution of the estima-

tion errors for a visual comparison of the three

methods.

The MSE can be divided further into components

that identify and quantify the deviation of estimated

values from the observations. They represent different

aspects of the discrepancy between the estimates and

the measurements (Kobayachi and Us Salam, 2000).

Let xi and yi (i =1,. . .,n) represent the estimated and

the observed soil salinity values, respectively, and

di =xi�yi the deviation of the estimated values from

the observations. The mean error (ME) or bias is

defined by:

ME ¼ 1

n

Xn
i¼1

xi � yið Þ ¼ x̄ � ȳ; ð17Þ

where x̄ and represent the means of the estimated and

the observed values, respectively, and n is the number

of locations for which observations are available. The

mean squared error (MSE) is:

MSE ¼ 1

n

Xn
i¼1

xi � yið Þ2 ¼ x̄� ȳð Þ2þ 1

n

Xn
i¼1

xi � x̄ð Þ½

� yi � ȳð Þ
i2
: ð18Þ



Table 1

Summary statistics for the hard data EC2.5 (dS m�1)

EC2.5 N Mean SD Range r Skewness Kurtosis

Calibration data

Nov 1994 13 1.42 0.34 0.96 0.85 �0.71 �1.00

Mar 1995 20 2.29 0.70 2.23 0.91 0.66 �0.78

Jun 1995 20 2.02 1.10 3.66 0.88 0.80 �0.50

Sep 1995 20 2.01 0.99 3.73 0.94 0.89 0.67

Dec 1995 20 1.84 0.90 2.59 0.92 0.45 �1.31

Mar 1996 16 2.07 0.81 2.57 0.87 0.08 �1.26

Jun 1996 20 1.83 0.90 2.86 0.87 0.28 �1.12

Mar 1997 20 1.61 0.63 2.20 0.89 �0.08 �0.87

Jun 1997 15 1.77 0.97 3.12 0.83 0.78 �0.23

Sep 1997 20 1.63 1.24 4.25 0.94 1.06 0.20

Dec 1997 20 1.60 1.04 3.61 0.90 0.51 �0.62

Sep 1998 20 3.30 2.17 6.95 0.85 0.50 �0.69

Apr 1999 20 1.84 1.74 6.41 0.93 1.70 2.48

Jul 1999 13 2.27 1.57 4.86 0.91 0.73 �0.52

Sep 1999 20 2.29 1.89 6.52 0.91 1.07 1.10

Apr 2000 18 2.11 1.63 6.32 0.94 1.19 1.51

Dec 2000 20 2.32 1.91 7.38 0.93 1.31 1.71

Validation data

Mar 2001 19 1.80 1.21 4.42 0.97 1.05 1.18

Jun 2001 20 1.99 1.75 5.83 0.86 1.22 0.42

N is the number of observations, SD is the standard deviation, and r

is the Pearson correlation coefficient.
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The first term on the right is the square of the bias

(SB):

SB ¼ x̄ � ȳð Þ2 ¼ ME2: ð19Þ
The second term is the mean squared difference

between the estimates and the measured values with

respect to the deviation from means. It is known as the

mean squared variation (MSV) and represents the

proportion of the MSE that is not due to the bias. A

larger MSV indicates that the model did not estimate

the variability of the observed values around their

mean adequately, i.e. the precision of the predicted

values is poor.

Eq. (18) can be rewritten as:

MSE ¼ SBþMSV: ð20Þ

The MSV can be divided, in turn, into two

components:

MSV ¼ SDe � SDoð Þ2 þ 2SDeSDo 1� rð Þ

¼ SDSD þ LCS; ð21Þ

where

SDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi � x̄ð Þ2
s

; ð22Þ

which is the standard deviation of the estimated

values, and

SDo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � ȳð Þ2
s

; ð23Þ

is the standard deviation of the observed values. The

SDSD is the difference in the magnitude of fluctuation

between the estimated and measured values. A larger

value implies that the model failed to estimate the

magnitude of fluctuation among the measurements.

The LCS is the lack of positive correlation (1� r)

weighted by the standard deviations. A large value

means that the model did not estimate the degree of

fluctuation in the observations.

Eq. (20) can be rewritten as:

MSE ¼ SBþ SDSD þ LCS: ð24Þ

All the analyses were done using the BMElib

toolbox (Christakos et al., 2002) written for Matlab

(MathWorks, 1999).
4. Results and discussion

4.1. Descriptive statistics

Table 1 gives the summary statistics of soil

salinity (EC2.5) for the different time periods. The

mean values, which vary between 1.42 dS m�1 for

November 1994 and 3.30 dS m�1 for September

1998, suggest the presence of strong temporal

variability. There is also considerable spatial varia-

tion shown by the large ranges between the mini-

mum and maximum values for the different time

periods. For example, December 2000 has a range of

7.38 dS m�1, which is the largest for the data

examined.

The Pearson correlation coefficients between ECa

and EC2.5 are strong. They vary from 0.83 to 0.97.

4.2. Covariography

The spatial and temporal components of the mean

trend were computed and interpolated to the grid data.

They were then subtracted from the EC2.5 values to
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give the residuals on which we computed and

modelled the space–time covariance function. The

latter is shown in Fig. 2a as function of the spatial lag,
Fig. 2. Covariograms: (a) spatial covariance and (b) temporal covariance.

model.
r, and in Fig. 2b as function of the temporal lag, s. Its
full representation as function of both spatial and

temporal lags is shown in Fig. 3.
Crosses are the experimental values and the solid line is the fitted



Fig. 3. Space–time covariance of the residual soil salinity data, R( p).

Table 2

Quantitative criteria for the comparison of the three approaches

Criterion Time HK HSK BME

r March 2001 0.87 0.92 0.93

June 2001 0.93 0.93 0.95

ME (dS m�1) March 2001 �0.176 �0.323 �0.226

June 2001 0.062 �0.057 �0.017

MSE (dS m�1)2 March 2001 0.489 0.650 0.387

June 2001 0.378 0.513 0.337

r is the Pearson correlation coefficient, ME is the mean error, and

MSE is the mean squared error.
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The covariance model fitted to the experimental

values was a non-separable space–time model that is

the sum of two nested exponential models:

cR r; sð Þ ¼
X2
k¼1

C0kexp � 3r

ask
� 3s

atk

� �
:

The first nested model with a sill, C01, of 0.27 (dS

m�1)2, a spatial range, as1, of 250 m, and a temporal

range, at1, of 8 months corresponds to short-scale

fluctuations. The long-range fluctuations are repre-

sented by the second component of the model with a

sill, C02, of 0.07 (dS m�1)2, a spatial range, as2, of

1500 m, and a temporal range, at2, of 200 months. The

contribution of the second structure to the total

variance of 0.34 (dS m�1)2 is small; it is only

20.6%. The ranges of both the spatial and temporal

covariograms of this second structure are beyond the

sampling distances.

4.3. Comparison of results

Soil salinity was predicted for two time periods,

March and June 2001, using the three approaches

discussed above. The cross-validation criteria ME,

MSE, and r are given in Table 2 for both times. Fig. 4

gives the distributions of the errors for March 2001.

The HSK results are the poorest; they have the

largest bias (ME) compared to the two other

approaches, although it is still not significantly
different from zero, and the largest MSE for both

time periods. Fig. 4 shows that HSK has the broadest

error distribution, mostly on the negative side of the

curve. This implies that this method is likely to

produce larger errors than the other two. The errors for

BME have a higher mode and a narrower distribution

compared with both kriging techniques (Fig. 4): this is

confirmed by its having the smallest MSE values

(Table 2). The MSE for HK is between those of BME

and HSK; therefore this method provides more

accurate estimates than HSK but less accurate ones

than BME. However, HK gives estimates that are less

biased than BME (mainly for March 2001). The

estimates are strongly correlated with the observations

for the three techniques and both time periods.

When BME is used without any soft data, the

results are strictly equivalent to HK. This accords with

the theory (Christakos and Li, 1998). Bayesian



Fig. 4. Distributions of estimation error for March 2001. The solid line is for BME, the dotted line is for HK, and the dashed line is for HSK.
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maximum entropy can also give estimates of soil

salinity in the absence of hard data; the results of this

cross-validation are given in Table 3. The estimates

show more bias (but still negligible) and are slightly

less accurate (particularly for March 2001), but the

differences in the results when hard (the neighbour-

hood search was limited to a maximum of the 10

nearest data) and soft data were used are not

significantly greater (last column of Tables 2 and 3).

This is a useful feature of BME and D’Or and Bogaert

(2003) used this property to map soil texture using

only the intervals defined from a textural triangle.

To investigate further the incorporation of soft data

by HSK and BME, we analyzed, in addition to the

hard data, only data with the largest intervals (from 30

spatial locations for each time period) rather than the

full set of 393 spatial locations for each time period
Table 3

Quantitative criteria for BME when hard data were excluded

Criterion March 2001 June 2001

r 0.91 0.94

ME 0.294 �0.075

MSE 0.701 0.348

r is the Pearson correlation coefficient, ME is the mean error, and

MSE is the mean squared error.
(see Table 2 and Fig. 4). Table 4 gives the results for

March 2001 and the distributions of the estimation

errors are shown in Fig. 5.

The results for HK (Table 4) are the same as before

as this technique takes no account of the soft data. The

ME for BME, �0.192, is not markedly different from

that in Table 2 when all the interval data were used

(�0.226) but the MSE is larger, 0.612 instead of

0.387 for the full interval data. The results for HSK

show that the estimates are biased and inaccurate,

giving erroneous estimates for some spatial locations.

The quantitative criteria confirm the graphical repre-

sentation in Fig. 5.

The components of MSE can provide more

information about the difference between the esti-

mated and the observed values. They are given in
Table 4

Quantitative criteria to compare the three methods of prediction

using only the largest interval data

Criterion HK HSK BME

r 0.87 0.23 0.86

ME �0.176 �88.4 �0.192

MSE 0.489 106079.4 0.612

r is the Pearson correlation coefficient, ME is the mean error, and

MSE is the mean squared error.



Fig. 5. Distributions of the estimation errors for March 2001, using only the largest interval data. The solid line is for BME, the dotted line is for

HK, and the dashed line is for HSK.
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absolute values in Table 5 and shown as proportions

in Fig. 6. The HSK has the largest MSE for both time

periods, whereas BME has the smallest values. This

suggests that BME provides more accurate predictions

than the two methods of kriging used. In addition, the

contribution of the bias to the MSE is almost zero for

the three approaches for June 2001, but for March

2001 it is largest for HSK (16%), followed by BME

(13.2%), and finally HK (6.3%). This confirms that

HK estimates are the least unbiased and those of HSK

are the most biased.

The lack of positive correlation (LCS) is the

component that contributed the most to the MSE of
Table 5

The components of MSE as absolute values

Criterion Time HK HSK BME

SB March 2001 0.031 0.104 0.051

June 2001 0.003 0.004 0.000

SDSD March 2001 0.033 0.239 0.092

June 2001 0.015 0.187 0.082

LCS March 2001 0.425 0.307 0.244

June 2001 0.360 0.322 0.255

MSE March 2001 0.489 0.650 0.387

June 2001 0.378 0.513 0.337

SB is the squared bias, SDSD is the squared difference between

standard deviations, and LCS is the weighted lack of positive

correlation.
the three interpolation methods for both time periods

(Table 5 and Fig. 6); the larger contribution is for June

2001. In particular, it contributed the most to the MSE

of the HK estimates with 87% and 95%, whereas it

contributed least to that of HSK (47% and 62%) and

its contribution was intermediate for BME (63% and

76%); the first value refers to March and the second to

June 2001. This suggests that HK failed to estimate

the degree of fluctuation in the observed soil salinity

even if its MSE is smaller than that of HSK. However,

the SDSD contributed more to the MSE of HSK

(36.8% and 36.5%) than to that of HK (6.7% and 4%)

and BME (23.8% and 24.3%), which indicates that

HSK failed to estimate the magnitude of fluctuation in

the measured electrical conductivity. The three com-

ponents of MSE (SB, SDSD, and LCS) for BME are

intermediate to those of HK and HSK. The MSE of

BME is the smallest, indicating that it performs better

than the two kriging techniques, and the SDSD shows

that it represents the degree of fluctuation in the

observations reasonably.

The small MSE for BME in March 2001 can be

explained as follows. The standard deviation SDo for

this time period is 1.18 dS m�1. Since SB (0.051) and

SDSD (0.092) are negligible, LCS (0.244) is the

component that contributes most to the MSE (0.387).

As the Pearson correlation coefficients (0.92 for HSK
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Fig. 6. Contribution of the components of MSE to its total: (a)

March 2001 and (b) June 2001. The SB is the squared bias, SDSD is

the squared difference between standard deviations, and LCS is the

weighted lack of positive correlation.

Table 6

The components of MSE as absolute values, using only the larges

interval data for March 2001

Component HK HSK BME

SB 0.031 7813.7 0.037

SDSD 0.033 97695.5 0.086

LCS 0.425 570.2 0.489

MSE 0.489 106079.4 0.612

SB is the squared bias, SDSD is the squared difference between

standard deviations, and LCS is the weighted lack of positive

correlation.

0

10

20

30

40

50

60

70

80

90

100

HK HSK BME

LCS SDSD SB

Fig. 7. Contribution of the components of MSE to its total, using

only the largest interval data for March 2001. The SB is the squared

bias, SDSD is the squared difference between standard deviations

and LCS is the weighted lack of positive correlation.
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and 0.93 for BME) are the same and SDo is the same,

the larger SDe for HSK (1.67) led to a larger LCS and

hence larger MSE. The smaller SDe for BME (1.48)

resulted in a small LCS and hence small MSE. The

overall deviation (MSE) between the measurements

and the BME predictions for March 2001 is small
t

because the predicted soil salinity shows limited

variation (compared to HSK estimates) for the 19

sites and BME predicted the observations with a

reduced bias (�0.226 against �0.323 for HSK).

Using only the largest interval data instead of all of

them, Table 6 and Fig. 7, the SDSD becomes the

major component of MSE for HSK (92.1%). This

means that HSK failed to estimate the magnitude of

fluctuation accurately among the observed electrical

conductivity values. The minimum and maximum

values of the latter for March 2001 are 0.16 and 4.58

dS m�1, respectively, whereas for the HSK estimates

they are 0 and 1408 dS m�1. This large range for the

latter resulted in the large SDe of 313.74 dS m�1

compared to the small SDo of 1.18 dS m�1; these

values explain the large SDSD. In comparison BME

performed well. Its minimum and maximum predic-

tions are 0.10 and 5.24 dS m�1, respectively. This is a

consequence of how the soft data are integrated into
,
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the prediction process. The HSK used only the

midpoint of intervals, disregarding their range and

the uncertainty associated with them, whereas BME

considers the full information provided by the soft

data. It takes into account the upper and lower limits

of the interval data and the uncertainty associated with

them. More importantly, BME distinguishes clearly

between accurate (hard) and uncertain (soft) data and

processes them differently.
5. Conclusions

The main aim of this work was to compare the

performance of three prediction techniques: BME

which incorporates soft interval data and two variants

of kriging (one using only hard data and the other

using hard data as well as the midpoint value of soft

interval data, treating them as if they were hard data).

The three approaches were evaluated by cross-

validation for two different time periods, which had

not been used in the previous analyses.

The BME provided reliable estimates even in the

absence of any hard data. When no soft data were

used, the BME estimates were strictly equivalent to

those from kriging (HK). Based on the ME and MSE,

we can conclude that the predictions from BME are

less biased and more accurate than those from the two

kriging techniques. Of these two techniques, the one

using the soft data (HSK) resulted in more bias and

less accuracy in the predictions. The results showed

that BME improved substantially the accuracy of the

predictions compared to kriging by taking into

account soft interval data.

The Pearson correlation coefficients were of the

same magnitude for HSK and BME. However, by

dividing the MSE into three components, we found

that HSK gave more biased estimates (large SB) and

failed to reproduce the true magnitude of fluctuation

among the observations.

The failure of HSK to incorporate the soft

information was more pronounced when we used

only the largest interval data, in addition to the hard

data, instead of the full interval data. In this case HSK

produced some unrealistic predictions of electrical

conductivity (very large and unreliable predictions).

In contrast, the way that BME integrates soft data into

the prediction process resulted in more accurate
predictions, whether we used the full interval data or

only the largest ones.

Ancillary data are cheap and readily available,

sometimes for the whole study area (exhaustive

secondary information). This secondary information

can be used in an efficient way to complement the

scarcity of the direct measurements of a soil property.

This work showed that BME could incorporate and

process soft data rigorously, leading to more accurate

predictions.
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Tóth, T., Csillag, F., Biehl, L.L., Micheli, E., 1991. Characterization

of semi-vegetated salt-affected soils by means of field remote

sensing. Remote Sensing of Environment 37, 167–180.


	Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data
	Introduction
	Materials
	Study site description
	Data description

	Methods
	Space-time random field model
	Bayesian maximum entropy
	Data analysis
	Validation and comparison criteria

	Results and discussion
	Descriptive statistics
	Covariography
	Comparison of results

	Conclusions
	Acknowledgements
	References


